3118

we of the Candidate:

B.E. DEGREE EXAMINATION, 2009

(CIVIL AND STRUCTURAL ENGINEERING)
(FOURTH SEMESTER)

CSEC-404. MECHANICS OF SOLIDS-II

(New Regulation)

(For the students joined during 2007-08 on wards)

lovember]

[Time : 3 Hours

$$
\text { Maximum : } 60 \text { Marks }
$$

(Answer FIVE Questions, Choosing ONE from each unit) All questions carry equal marks $\quad(5 \times 12=60)$

UNIT-I

I. Determine the vertical and horizontal displacements of the point C of the pin-joined frame as shown in fig(1). The cross sectional area of $A B$ is 100 sq. mm and of $A C^{\prime}$ and $B C 150$ sq. mm each $E=2 \times 10^{5} \mathrm{Nmm}^{2}$.

2. A truss is loaded as shown in fig(2). Find the forces in the member by tension co-efficient method.

3. A beam of T section (flange: $120 \times 20 \mathrm{~mm}$; web $130 \times 10 \mathrm{~mm}$) is 2.5 m in length and is simply supported at the ends. It carries a load of 3.2 kN inclined at 20 degree to the vertical and passing through the centroid of the section. If $\mathrm{E}=200 \mathrm{GPa}$, calculate the maximum tensile and compressive stress and deflection due to the load.
4. A timber beam 250 mm wide by 300 mm deep is used as simply supported beam on a span of 5 m . It is subjected to a concentrated load of 30 N at the midspan section of the beam. If the plane of the load makes an angle of 45 degree with the vertical plane of symmetry, find the direction of NA and the maximum stress in the beam.

UNIT-III

5. Two $8 \mathrm{~cm} \times 16 \mathrm{~cm}$ rectangular section cast iron columns are each 4.5 m long with one end fixed and other hinged. They share equally the total load carried by them. Find using the Rankine's formula. the diameter of single cast iron column of circular section of the length and same end condition to replace both of them. Take Rankine's constant as $1 / 1600$ for hinged end conditions and crushing stress for cast irons as 500 MPa .

Compare the crippling loads given by Rankinte's and Euler's formulae for tubular strut 2.25 m long having outer and inner diameters of 37.5 mm and 32.5 mm loaded through pin-joint at both ends. Take yield stress as $315 \mathrm{MPa}, \mathrm{a}=1 / 7500$ and $\mathrm{E}=200 \mathrm{GPa}$.

UNIT-IV

7. The ends of a thin cylinder, 180 internal diameter and wall thickness 3.0 mm are closed by rigid plates and it is then filled with a liquid. When an axial compressive force of 33.6 kN is applied to the cylinder, the pressure of the liquid rises by $72 \mathrm{kN} / \mathrm{m}^{2}$. If $E=200 \mathrm{GPa}$ and Poisson's ratio $=0.3$, find the bulk modulus of the liquid.
8. A compound cylinder, formed by shrinking one tube to another is subjected to an internal pressure of 90 MPa . Before the fluid is admitted, the internal and external diameters of the compound cylinder are 180 mm and 300 mm respectively and the diameter at the junction is 240 mm . If after shrinking on, the radial pressure at the common surface is 12 MPa , determine the final stresses developed in the compound cylinder.

UNIT-V

9. Analyse the beam as shown in fig(3) and draw the SFD and BMD.

$-4-$
10. Calculate the support reactions and moments for the fixed beam as shown in $\operatorname{fig}(4)$ and draw the sher force and bending moment diagrams.

